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C H A P T E R 5 
Cues for Reproduction in 

Squamate Reptiles
James U. Van Dyke

5.1 INTRODUCTION

To maximize fitness, animals should initiate reproduction based on 
information from suites of cues that communicate three variables critical 
to reproductive success: 1) environmental conduciveness for successful 
reproduction, and survival of offspring and (usually) parents; 2) physiological 
capability of parents to reproduce; and 3) likelihood of successful mating. 
Squamates vary widely in reproductive mode (egg-laying, or oviparity vs. 
live birth, or viviparity), reproductive frequency (including reproducing 
only once, i.e., semelparity), and output (Tinkle et al. 1970; Dunham et al. 
1988), all of which may alter the phenology of gametogenesis and embryonic 
development relative to season, physiological state (i.e., body condition), 
courtship, and mating. These phenomenological differences necessitate 
divergent reproductive decision-making approaches that may be informed 
by different suites of cues. In addition, specifi c components of reproduction, 
including gametogenesis and mating behavior, may not be stimulated by 
the same environmental or physiological cues.

The purpose of this review is to discuss the current state of knowledge 
of the mechanisms squamates use as cues for the decision to reproduce. 
Here, the decision to reproduce is defi ned as analogous to a life-history 
allocation decision (e.g., Dunham et al. 1989), rather than as a result 
of conscious thought processes. The endocrine connections of the 
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hypothalamic-pituitary-gonadal axis are briefl y reviewed because they are 
critical to communicating information from reproductive cues to the brain, 
gonads, and accessory reproductive organs. Associated and dissociated 
reproduction are also briefl y introduced because both strategies might have 
ramifi cations for the evolution of reproductive cues in squamates. The bulk 
of the review then focuses on cues that provide squamates with information 
regarding season and environmental conditions, resource availability, and 
the likelihood of mating. In cases where phenomena have been suggested 
to act as cues for reproduction, but few physiological explanations have 
been examined in squamates, relevant literature from mammals and birds 
is discussed in order to suggest possible avenues for future research. 
Throughout, a heuristic model of hypothetical signaling mechanisms that 
communicate detected cues to the hypothalamic-pituitary-gonadal axis 
(Figs. 5.1–5.4) is constructed to clearly identify hypothetical mechanisms 
linking reproductive cue detection to the hypothalamic-gonadal-pituitary 
axis. The review concludes with a discussion of how recent advances in 

Color image of this fi gure appears in the color plate section at the end of the book.

Fig. 5.1 Generalized structure of the vertebrate hypothalamic-pituitary-gonadal axis (HPGA). 
The HPGA forms the backbone of a heuristic model of the signaling mechanisms that 
communicate reproductive cues to the brain and result in reproductive decisions. Organs 
are represented by black boxes, while hormones are blue. Addition signs (+) indicate that a 
hormone stimulates upregulation of the receiving organ, while subtraction symbols (–) indicate 
that it stimulates downregulation of the receiving organ. It remains unclear how the HPGA 
behaves differently in associated or dissociated breeders.
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next-generation sequencing, candidate-gene approaches, and proteomics 
might be used to further elucidate the molecular mechanisms underlying 
reproductive cues. Although this volume focuses on lizards, snakes are 
included in this review because they are highly specialized lizards (Vidal 
and Hedges 2005; Pyron et al. 2013), and because they have been a major 
model system for investigations of the effects of resource availability and 
mating on reproduction, and the roles of the pineal gland and melatonin, in 
squamates. Where possible, relevant information from tuatara, Sphenodon 
punctatus is also reviewed.

5.2 HYPOTHALAMIC-PITUITARY-GONADAL AXIS

As in other vertebrates, the hypothalamic-pituitary-gonadal axis (HPGA) 
communicates reproductive cues from the brain to the gonads and accessory 
reproductive organs in squamate reptiles (Fig. 5.1; Licht 1979; Bona-Gallo 
et al. 1980; Krohmer and Lutterschmidt 2011). Reproduction is initiated 
by production of gonadotropin-releasing hormones (GnRHs) by the 
hypothalamus (King and Millar 1980). Secretion of GnRHs is likely pulsatile 
(Licht and Porter 1987), but the only evidence for pulsatile release in reptiles 
is from turtles (Tsai and Licht 1993). Gonadotropin-releasing hormones 
stimulate the production of gonadotropins in the anterior pituitary, which 
are carried in blood plasma to the gonads (Eyeson 1971; Licht 1979). In 
response to stimulation by gonadotropins, gonads recruit gametes and 
synthesize the steroid sex hormones estradiol (in females) and testosterone 
(in males), which activate accessory reproductive organs (Hahn 1967; Courty 
and Dufaure 1979; Aldridge 1982; Ho et al. 1982). 

Estradiol in particular acts to initiate production of yolk (vitellogenesis) 
in the liver of female squamates (Hahn 1967; Ho et al. 1982; Wallace 1985; 
Ho 1987), while in males of many species testosterone stimulates the 
hypertrophy of the sexual segment of the kidney and mating behavior, and 
likely plays a role in spermatogenesis (Prasad and Sanyal 1969; Weil and 
Aldridge 1981; Weil 1985; Aldridge et al. 1990; Aldridge et al. 2009; Aldridge 
et al. 2011). Both estradiol and testosterone may also inhibit gonadotropin 
secretion by the anterior pituitary (reviewed by Licht 1979), producing a 
negative-feedback loop once reproduction is initiated (Fig. 5.1).

Although the general structure of the HPGA described here is largely 
conserved across vertebrates, the endocrine components of the squamate 
HPGA are unique. Most notably, luteinizing hormone (LH), which is 
an important gonadotropin in many vertebrates, including turtles and 
crocodilians, does not exist in the squamate HPGA (Licht 1974; Licht et al. 
1974; Licht and Crews 1975). Instead, follicle-stimulating hormone (FSH) 
appears to be the only functional gonadotropin in squamates (Licht and 
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Crews 1975; Licht 1979). Furthermore, the peptide structures of GnRH 
and FSH (and their receptors) differ across taxa (Licht 1983; Licht et al. 
1984; Powell et al. 1986; Licht and Porter 1987; Borrelli et al. 2001). Thus, 
commercially-available hormone assays, which are designed to target 
mammal or chicken hormones, are unable to reliably measure titers of GnRH 
or FSH in squamates. In addition, injections of heterologous GnRH, LH, or 
FSH into squamates, although seemingly effective (e.g., Jones et al. 1973; 
Sinervo and Licht 1991), may not be reliable indicators of hormone function 
(Licht 1983). Prolactin may also play a role in the squamate HPGA, but 
studies examining the effects of prolactin on reproduction have produced 
contradictory results (reviewed by Mazzi and Vellano 1987). The HPGA of 
the tuatara, Sphenodon punctatus has not been thoroughly examined, but 
males and females appear to utilize testosterone and estradiol similarly to 
squamates and other vertebrates (Cree et al. 1991; Cree et al. 1992).

Diffi culties in accurately measuring GnRH and gonadotropin secretion 
and function have constrained studies of reproductive cues in squamate 
reptiles. Perhaps as a result, studies of GnRH, gonadotropins, other potential 
hormonal regulating systems (e.g., inhibins; Licht and Porter 1987), and 
reproductive cues in squamates have declined in frequency since the 
early 1990s. In contrast to GnRH and FSH, steroid hormone structures are 
largely conserved across taxa, and assays targeting mammalian or chicken 
estradiol, testosterone, and progesterone have been widely used in studies 
of squamate reproduction (e.g., Naulleau et al. 1987; Naulleau and Fleury 
1990; Saint Girons et al. 1993; Swain and Jones 1994; Schuett et al. 1997; 
Edwards and Jones 2001; Martinez-Torres et al. 2003; Zaidan et al. 2003; 
Almeida-Santos et al. 2004; Taylor et al. 2004; Yamanouye et al. 2004; Lind 
et al. 2010; Van Dyke et al. 2012). 

Elucidating the endocrine components of the HPGA is of paramount 
importance to understanding the cues for reproduction in squamates. 
Without this knowledge, we can only determine that a particular event is 
a cue for reproduction and how it is detected, but we cannot effectively 
determine how detection of the event is transduced into a reproductive 
response. We also cannot determine how multiple cues (e.g., temperature, 
resource availability) are simultaneously transduced in the brain and/or 
HPGA.

5.3 ASSOCIATED VS. DISSOCIATED REPRODUCTION

Squamate reptiles exhibit remarkable diversity in the timing of gonadal 
recrudescence, gametogenesis, and mating. In associated reproduction, 
gonadal recrudescence and gametogenesis occur simultaneously with 
mating (modifi ed from Crews 1984; Crews 1999; Aldridge et al. 2009). In 
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dissociated reproduction, gametogenesis occurs months prior to mating 
behavior, and gametes are stored until use (modifi ed from Crews 1984; 
Crews 1999; Aldridge et al. 2009). For the purposes of this review, this 
distinction is critical because mating and gametogenesis are likely stimulated 
by the same cues and HPGA hormonal cascade in associated breeders, but 
may be stimulated by different cues in dissociated breeders. Krohmer 
and Lutterschmidt (2011) suggest that dissociated reproduction occurs 
in male snakes when the HPGA stimulates a peak of plasma testosterone 
concentrations during gametogenesis, and metabolic clearance slowly 
declines until the mating season. In contrast, gametogenesis and mating 
may occur at such distant points in time (e.g., late summer vs. the following 
spring, respectively) that they could even be stimulated by different HPGA 
hormonal cascades, but this hypothesis has never been tested due to the 
diffi culties of measuring cycles in GnRH and gonadotropin concentrations, 
and corresponding receptor densities, in reptiles. However, other studies 
have documented two peaks in plasma testosterone concentration in male 
snakes with dissociated reproduction, one during spermatogenesis and 
one during the mating season (Aldridge 1979b; Weil and Aldridge 1981; 
Aldridge et al. 1990). Interestingly, the peak during the mating season is 
often higher than during spermatogenesis. Weil (1985) suggests that, during 
spermatogenesis, testicular production of testosterone might not be refl ected 
by plasma concentrations due to capture and metabolic clearance within 
testicular tissues prior to transport to the bloodstream.

Although many studies consider associated and dissociated 
reproduction only in males (e.g., Krohmer and Lutterschmidt 2011), I follow 
Crews (1984) in applying the terms to both males and females. Under this 
defi nition, one sex within a species may exhibit associated reproduction, 
while the other exhibits dissociated reproduction. For example, most male 
North American colubrids undergo spermatogenesis in the summer, but 
mate during the following spring (reviewed in Aldridge et al. 2009), which 
is an example of dissociated reproduction. In contrast, all female North 
American colubrids examined thus far initiate vitellogenesis in the spring, 
and also mate during the same spring (reviewed in Aldridge et al. 2009), 
which exemplifi es associated reproduction. Reproduction in the sympatric 
North American pit vipers differs greatly from the colubrid condition. Like 
colubrids, male North American pit vipers all undergo spermatogenesis in 
the summer, but males of different species mate in the late summer/early 
autumn immediately after spermatogenesis (associated reproduction), 
store sperm to mate in the spring long after spermatogenesis (dissociated 
reproduction), or both (Aldridge and Duvall 2002). In contrast, all female 
North American pit vipers examined thus far initiate vitellogenesis in the 
late summer/early autumn, but do not complete vitellogenesis and ovulate 
until spring (Aldridge and Duvall 2002). Thus, because vitellogenesis may 
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last from summer to the following spring and mating occurs during either 
or both seasons, all female North American pit vipers exhibit associated 
reproduction, regardless of when mating occurs. However, in females that 
mate in the spring, it is likely that mating behavior and gametogenesis are 
stimulated by different cues, even though they technically exhibit associated 
reproduction. While both sexes of most lizards are associated breeders 
(Aldridge et al. 2011), some temperate lizards, including Australian spotted 
skinks, Niveoscincus ocellatus (Jones et al. 1997) and tussock skinks, Pseudemoia 
entrecasteauxii (Murphy et al. 2006), exhibit a reproductive cycle similar to 
that of North American pit vipers. The tuatara, Sphenodon punctatus, exhibits 
a unique reproductive cycle: males initiate spermatogenesis just prior to or 
concurrent with autumn mating, while females initiate vitellogenesis up to 
three years prior to a given reproductive event (Cree et al. 1992; Brown et 
al. 1994). Thus, males appear to be associated breeders, while females are 
dissociated breeders, but exhibit a reproductive schedule vastly different 
from dissociated breeding in squamates.

Associated and dissociated reproduction are more thoroughly 
discussed elsewhere in the primary literature (Crews 1984; Crews 1999; 
Aldridge and Duvall 2002; Aldridge et al. 2009). They are mentioned here 
to illustrate that cues for reproduction may differ within and among even 
closely related or sympatric squamate taxa, and may also differ between 
gametogenesis and mating behavior. In the pit viper example above, the 
cues for spermatogenesis and vitellogenesis may also stimulate mating 
behavior in populations that mate in autumn, but gametogenesis and 
mating behavior may be stimulated by different cues in populations that 
mate in spring. Similarly, if males of a species initiate spermatogenesis 
in autumn but females initiate vitellogenesis in spring, then the cues for 
gonadal recrudescence and gametogenesis, or the physiological processes 
that detect and transduce those cues, may differ between sexes.

5.4 SEASONAL CUES: PHOTOPERIOD, TEMPERATURE, AND 

MOISTURE

Reproduction must be coordinated with suitable environmental conditions 
to maximize developmental success, parental survival, and offspring 
survival. In squamates, developmental success is directly related to 
temperature and, especially in oviparous (egg-laying) species, moisture 
(Packard et al. 1982; Gutzke and Packard 1987; Andrews et al. 2000; Rock et 
al. 2000; Ji and Du 2001). In temperate and tropical systems, temperature 
and/or moisture vary seasonally throughout the year. Therefore, squamates 
can only maximize reproductive success if reproduction is initiated based 
on cues that provide information on time of year (i.e., season). Seasonal 
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changes in temperature and rainfall provide direct cues regarding 
environmental conditions favorable to reproduction, while photoperiod 
provides an indirect metric of season, and should be correlated, at least 
partially, with seasonal changes in temperature and moisture. Accordingly, 
squamates appear to use all three factors as seasonal cues for reproduction 
(e.g., zeitgebers; Tinkle and Irwin 1965; Licht and Porter 1987; Brown and 
Shine 2006). Within species, inter-individual variation in the sensitivity 
of season detecting mechanisms may also play a role in determining how 
early reproduction occurs (Wapstra et al. 1999), which may be critical to 
maximizing offspring fi tness (Olsson and Shine 1997).

5.4.1 Phenology of Seasonal Cues: Temperate vs. Tropical Taxa

In temperate squamates, seasonal changes in environmental temperature 
are the primary seasonal cue for initiating reproduction, while seasonal 
changes in photoperiod appear to be a secondary cue (Saint Girons 
1982). Most temperate squamates (but not all; Moore et al. 1984) appear 
to require a period of exposure to cold environmental temperatures 
during winter, followed by warm temperatures in the spring or summer 
to initiate gonadal recrudescence, reproductive behavior, or both (Marion 
1970; Licht 1972; Botte et al. 1978; Marion 1982; Crews 1983; Lutterschmidt 
2012). Spermatogenesis in particular appears to be stimulated by warm 
temperatures in North American colubrids and rattlesnakes, while 
photoperiod has little effect (Aldridge 1975; Aldridge 1979b; Weil and 
Aldridge 1979). In captivity, many temperate squamate species only breed 
after winter exposure to cold temperatures followed by spring warming 
(Osborne 1982). Delays in seasonal spring warming during spring may 
delay the initiation of reproduction (e.g., Castilla et al. 1992; Smith et al. 
1995). The seasonal cues for reproduction remain unknown in Sphenodon, 
but males initiate spermatogenesis in late summer/autumn. Females initiate 
vitellogenesis in the spring following oviposition, yet vitellogenesis may 
last three years until ovulation occurs, and mating occurs in autumn (Brown 
et al. 1991; Cree et al. 1992).

Temperate species that do not require exposure to cold temperatures still 
exhibit greater reproductive responses to seasonal changes in temperature 
than to changes in photoperiod. These species exhibit “refractory periods” 
after reproduction during which changes in neither photoperiod nor 
temperature stimulate gonadal recrudescence. After the refractory period 
ends, only increases in temperature, and not day length, can stimulate 
reproduction (Tinkle and Irwin 1965; Licht et al. 1969; Cuellar and Cuellar 
1977; Lofts 1978; Cuellar 1984). The animals used in most of these studies 
(excluding male Naja naja in Lofts 1978) were female lizards from species 
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(Aspidoscelis uniparens, Lacerta sp., and Uta stansburiana) that produce 
multiple clutches each year. Multi-clutching species do not experience cold 
temperatures between clutches in a single season, and refractory periods may 
be necessary to allow females to “recover” in some physiological condition, 
possibly stored nutrient reserves, prior to subsequent reproductive bouts. 
Thus, the evolution of post-reproductive refractory periods may be partly 
associated with the evolution of repeated reproduction in a single season.

Tropical squamates exhibit considerable diversity in the seasonality of 
reproduction, but relatively few species reproduce continuously throughout 
the year (reviewed by Brown and Shine 2006). Although tropical squamates 
do not experience substantial cool periods during winter, slight decreases 
in temperature, in concert with reduced day length, are suffi cient to 
stimulate reproduction in some species (e.g., tropical anoles; Gorman 
and Licht 1974). Tropical tropidurine lizards, while potentially capable of 
reproducing throughout the year, exhibit a peak of reproduction during the 
wet season (Vitt and Goldberg 1983). In the tropical spiny lizard, Sceloporus 
utiformis, testicular recrudescence is associated with increasing temperature 
and precipitation, while ovarian recrudescence is associated only with 
increasing photoperiod (Ramirez-Bautista and Gutierrez-Mayen 2003). In 
tropical Australian Skinks (Ctenotus sp.), reproduction is highly correlated 
with rainfall (James 1991). Tropical Australian water pythons, Liasis fuscus, 
nest late in the dry season thus maximizing incubation temperatures 
during development, and coil around their eggs to prevent desiccation, 
while the sympatric keelback, Tropidonophis mairii, nests immediately 
after the end of the wet season, possibly to reduce egg desiccation (Brown 
and Shine 2006). In contrast, tropical populations of several Australian 
skinks (Carlia pectoralis, Cryptoblepharus virgatus, Heteronotia binoei, and 
Lampropholis delicata) do not appear to entrain reproduction with seasonal 
changes in temperature, photoperiod, or rainfall, and may rely on different 
environmental factors, such as solar light spectrum (Clerke and Alford 1993). 
Likewise, monitor lizards (Varanus sp.) in the Australian wet tropics exhibit 
considerable diversity in timing of reproduction relative to wet and dry 
seasons (James et al. 1992). In the absence of natural cues, common boas, Boa 
constrictor, can be induced to reproduce in captivity via reductions in day 
length, temperature, and feeding for several weeks (De Vosjoli et al. 2005). 
Notably, few of these studies directly investigate the cues that stimulate 
gonadal recrudescence or reproductive behavior in tropical squamates, 
but only report when reproductive events occur relative to seasonal 
environmental conditions. Together, these studies illustrate the potential 
diversity of seasonal environmental cues that temperate and tropical 
squamates can use to initiate reproduction. Further study is necessary to 
determine how environmental cue-detection mechanisms co-evolve with 
different reproductive cycles in both tropical and temperate ecosystems. 
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5.4.2 Physiology of Seasonal Cue Detection and Transduction

Reproductive cues derived from photoperiod are transduced by the parietal-
pineal complex in squamates and in Sphenodon (Fig. 5.2; Firth et al. 1989; 
Underwood 1989; Tosini et al. 2001). In many lizards the parietal eye, which 
is dense in photoreceptors (reviewed by Tosini 1997), appears to be the 
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Fig. 5.2 Hypothetical mechanisms squamates might use to detect environmental conduciveness 
for reproduction are added to the generalized HPGA. Question marks indicate that detection 
or signaling mechanisms are unknown (temperature), are hypothetical (HIOMT), or are not 
fully understood (melatonin). Temperature is likely to be more important than photoperiod in 
stimulating reproduction, but the mechanisms for detecting and communicating temperature 
to the pineal gland are unknown. HIOMT represents hydroxyindole-O-methyltransferase, 
but serotonin or norepinephrine could also act as signaling factors between both the parietal 
and lateral eyes, and the pineal gland. The pineal also directly innervates the pretectal and 
tegmental areas of the brain, which could provide a mechanism for neuronal signaling to the 
HPGA. The estradiol/testosterone negative feedback loop to the anterior pituitary is removed 
for clarity. Organs are represented by black boxes, hormones are blue, and cues are green.
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primary detector of photoperiod. For example, circadian melatonin cycles 
are eliminated after parietalectomy in shingleback skinks, Tiliqua rugosa 
(Firth and Kennaway 1980). In contrast, snakes and geckos have secondarily 
lost the parietal eye (Quay 1979). Perception of day length may primarily 
occur in the lateral eyes in these taxa, but it is notable that even blinding 
does not prevent circadian entrainment in geckos (Underwood and Groos 
1982); similar studies have not been performed on snakes.

Regardless of whether photoperiod is detected by the lateral eyes, 
parietal eye, or both (Tosini et al. 2001), perception of day length is 
communicated to the body via secretion of melatonin by the pineal organ 
(Underwood 1989; Mendonça et al. 1995; Mendonça et al. 1996b). The pineal 
organ also directly innervates the pretectal and tegmental areas of the brain 
(Tosini 1997), which may allow direct neuronal communication between 
the pineal gland and the HPGA. How light cues from the parietal eye and 
lateral eyes are communicated to the pineal gland is not well understood, but 
could occur via secretion of serotonin, norepinephrine, or hydroxyindole-
O-methyltransferase (HIOMT; Tosini 1997). 

The pineal organ is also responsible for transducing seasonal 
information from body temperature. It is not known whether the pineal 
organ itself detects body temperature, or only transduces thermal signals 
from other detecting mechanisms (Underwood 1989). Regardless, the pineal 
organ appears to be responsible for simultaneously transducing seasonal 
information based on both photoperiod and body temperature via secretion 
of melatonin. Daily melatonin secretions in squamates cycle between 
maxima synchronized by cool temperatures during scotophase, and minima 
synchronized by warm temperatures during photophase (Firth et al. 1979; 
Underwood and Calaban 1987; Firth et al. 1989; Tilden and Hutchinson 1993). 
Together, seasonal increases in day length and temperature are accompanied 
by overall diel decreases in plasma melatonin concentration, and vice-versa 
(Firth et al. 1979; Mendonça et al. 1995). Interestingly, photic suppression of 
melatonin secretion during long photoperiods is less pronounced in Anolis 
lizards than in other vertebrates (Moore and Menaker 2011). It remains 
unclear whether circadian cycles in circulating melatonin in Sphenodon are 
entrained primarily by temperature or photoperiod, but the presence of 
a well-developed parietal eye and thermal effects on melatonin secretion 
suggest both mechanisms are possible (Dendy 1911; Firth et al. 1989). After 
secretion, circulating melatonin is bound by receptors throughout the brain 
(Wiechmann and Wirsig-Wiechmann 1994), and possibly in the gonads 
(Mayer et al. 1997). In mammals, high-affi nity melatonin receptors in the 
hypothalamus may play a role in activating the HPGA (Reppert et al. 1994), 
but the existence of melatonin receptors in the squamate hypothalamus 
has not been tested.
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High serum melatonin concentrations generally suppress reproduction 
in male squamates. Pinealectomy, which eliminates most melatonin 
secretion, induces testicular recrudescence in male green anoles, Anolis 
carolinensis, in autumn, but not in summer (Underwood 1981). Injected 
melatonin does not inhibit testicular recrudescence in pinealectomized 
males, but does so in intact males (Underwood 1981). Similarly, summer 
injections of melatonin in male oriental garden lizards, Calotes versicolor, 
inhibit testicular recrudescence (Haldar and Thapliyal 1981), while 
pinealectomy induces testicular recrudescence during both summer and 
winter (Thapliyal and Haldar 1979). Fall pinealectomy inhibits spring 
reproductive behavior in male Thamnophis sirtalis (Mendonça et al. 1996b), 
while spring pinealectomy does not (Mendonça et al. 1996a). This suggests 
that pineal transduction of thermal and photoperiod cues for reproduction 
occurs during or prior to hibernation in male Thamnophis sirtalis (Mendonça 
et al. 1996a). Seasonal differences in the effect of pinealectomy and melatonin 
injection may indicate physiological mechanisms that explain refractory 
periods, or why exposure to cold temperatures during winter is critical to 
successful reproduction in many temperate squamates. 

Studies of melatonin effects on reproduction in female squamates have 
been less frequent. Pinealectomy induces ovarian recrudescence in female 
Anolis carolinensis, while subsequent melatonin injections inhibit it outside 
of the reproductive season; however, the effects of pinealectomy decrease 
during the reproductive season (Levey 1973). Parietalectomy accelerates 
gonadal recrudescence in female Sceloporus lizards, but not males, indicating 
that the role of the parietal eye (and presumably, the pineal gland and 
melatonin) in regulating reproduction might differ between sexes (Stebbins 
and Cohen 1973). 

The mechanisms squamates use to detect seasonal changes in moisture 
or rainfall remain unknown. Rainfall and soil moisture levels may not act 
as cues for the initiation of gametogenesis, but may act as cues for specifi c 
reproductive behaviors, especially oviposition (Stamps 1976; Brown and 
Shine 2006). In captive reptiles, availability of moist nesting environments is 
critical to successful oviposition, and, in dry conditions, females may retain 
eggs for so long that they develop dystocia (e.g., egg binding; DeNardo 
2006). Nest moisture is especially important for successful development in 
many oviparous squamates because many taxa produce leathery eggshells 
with relatively high water permeability (Packard et al. 1982). In contrast, 
female pythons, many of which actively incubate their eggs via encirclement 
with their bodies, can limit egg desiccation even in dry nest environments 
(Lourdais et al. 2007). 

Reproduction might also be correlated with rainfall if increased rainfall 
is associated with increased food abundance, which could maximize 
resources available for reproduction, or could maximize offspring growth 



120 Reproductive Biology and Phylogeny of Lizards and Tuatara

and survival rates (but there is limited evidence for this pattern in 
squamates; James and Shine 1985; Brown and Shine 2006; Shine and Brown 
2008). Therefore, food availability, rather than rainfall per se, might be the 
primary cue for reproduction (Wikelski et al. 2000). If food availability is 
limiting to offspring survival after reproduction, females might over-allocate 
nutrients to yolk in order to provide offspring with energy reserves to 
sustain them until they can successfully forage (e.g., residual yolk; Troyer 
1983; Van Dyke et al. 2011).

Most studies of reproductive cues and phenology in response to 
environmental conditions have been conducted on iteroparous squamates 
with no embryonic diapause. Environmental cues for reproduction might 
vary among squamate taxa depending on whether they are semelparous 
(reproduce only once in their lifetime) or iteroparous (reproduce multiple 
times throughout life), produce single or multiple litters/clutches per year, 
or exhibit embryonic diapause. Indeed, the selection pressure to tightly 
coordinate reproduction with suitable environmental conditions should 
be strongest in semelparous and single-litter/clutch species because the 
risks of total reproductive failure are higher than in iteroparous and multi-
clutching species. 

Species that exhibit embryonic diapause (e.g., Chameleons; Andrews 
2004) might be able to reproduce in spite of poor environmental conditions. 
In chameleons, embryonic diapause may also allow delayed hatching until 
seasonal environmental conditions maximize offspring survival (Andrews 
and Donoghue 2004). In addition, some viviparous lizards that inhabit 
cold climates, including the Australian southern snow skink, Niveoscincus 
microlepidotus, and the New Zealand common gecko, Hoplodactylus 
maculatus, carry fully-developed offspring over winter and give birth in 
the following spring (Olsson and Shine 1999; Girling et al. 2002; Rock 2006). 
In these taxa, delaying birth via embryonic diapause has been suggested 
to maximize potential offspring foraging and growth during the summer 
prior to the subsequent winter (Olsson and Shine 1998). Thus, embryonic 
diapause might allow the dissociation of environmental constraints on 
offspring survival from parents’ decisions to reproduce. Taken together, 
the diversity of reproductive strategies exhibited among squamates could 
promote the utilization of different environmental cues for reproduction, 
and phylogenetic analyses are needed to understand how divergent 
mechanisms of cue detection and transduction have evolved as a response.

5.5 RESOURCE AVAILABILITY CUES: INCOME AND CAPITAL

Reproduction requires a signifi cant investment of energy and nutrients. 
Gametes, especially eggs, are rich in energy and nutrients and expensive to 
produce (Olsson et al. 1997; Van Dyke and Beaupre 2011), and females may 
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incur additional metabolic costs of gravidity or pregnancy (Birchard et al. 
1984; DeMarco and Guillette 1992; Angilletta and Sears 2000; Robert and 
Thompson 2000; Schultz et al. 2008). In addition, reproductive behaviors, 
including mate-searching, courtship, mating, and nest brooding, may be 
energetically expensive (Harlow and Grigg 1984; Olsson et al. 1997; Friesen 
et al. 2009). As a result, the availability of resources, including both food and 
stored reserves, is an important constraint on reproduction, and detection 
of resource availability may function as a cue for the decision to reproduce.

5.5.1 Phenology of Resource Availability Cues

Individuals of many squamate species do not reproduce annually (Bull and 
Shine 1979), and multi-year gaps between reproductive events have been 
suggested to be the result of adults requiring multiple years to accumulate 
the resources necessary for reproduction (Hahn and Tinkle 1966; Aldridge 
1979a; Slip and Shine 1988; Gloyd and Conant 1990; Brown 1991; Van Wyk 
1991; Naulleau et al. 1999; Olsson and Shine 1999; Diller and Wallace 2002; 
Ernst and Ernst 2003; Ibargüengoytía 2004). Even within a given active 
season, low resource availability can delay the initiation of reproduction 
until suffi cient resources are accumulated (Vitt et al. 1978; Bauwens and 
Verheyen 1985; Abell 1999), which may reduce offspring fi tness (Olsson 
and Shine 1997). The capital-income dichotomy predicts that animals 
base the decision to reproduce on either the magnitude of stored reserves 
(capital) or the rate of nutrient assimilation from diet (income; Drent and 
Daan 1980). In squamates, this prediction has been frequently tested in 
studies that compare body condition indices between reproductive and 
non-reproductive individuals in tropical spiny lizards, Sceloporus mucronatus 
(de la Cruz et al. 1988), viviparous lizards, Zootaca vivipara (Bleu et al. 2013), 
smooth snakes, Coronella austriaca (Reading 2004), garter snakes, Thamnophis 
sirtalis (Gregory 2006), and Aspic vipers, Vipera aspis (Naulleau and Bonnet 
1996; Aubret et al. 2002). Other studies have correlated body condition 
indices with total reproductive output in collared lizards, Crotaphytus 
collaris (Telemeco and Baird 2011), and water skinks, Eulamprus tympanum 
(Doughty and Shine 1998). In these comparisons, body condition is usually 
(but not always; Doughty and Shine 1997) defi ned either as the ratio of body 
mass to body length, or via a regression of body mass and body length. 
Regardless, reproductive individuals often exhibit higher body conditions 
than do non-reproductive individuals, which is frequently interpreted 
as evidence for body-condition thresholds for reproduction (e.g., capital 
breeding; Bonnet et al. 1998).

Unfortunately, most studies of the effects of body condition on 
reproduction in squamates are correlative, and do not directly distinguish 
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between contributions made by fat mass and muscle mass to total body 
condition. Whereas fat mass is often described as the primary cause of 
fl uctuations in body condition (e.g., Bonnet et al. 1998; Aubret et al. 2002), 
changes in muscle mass may also drive fl uctuations in body condition 
(Lourdais et al. 2004). In addition, other studies report that reproductive 
allocation decisions, particularly clutch or litter size, are at least partially 
dependent upon food availability during reproduction (income) rather 
than capital, in marine iguanas, Amblyrhynchus cristatus (Rubenstein and 
Wikelski 2003), Asian northern grass lizards, Takydromus septentrionalis (Du 
2006), swamp snakes, Seminatrix pygaea (Winne et al. 2006), and Aesculapian 
snakes, Zamensis longissimus (Naulleau and Bonnet 1995), as well as in so-
called capital breeders like Vipera aspis (Madsen and Shine 1999; Bonnet 
et al. 2001). In Sphenodon, gravidity rates do not differ across populations 
in correlation with population differences in body condition (Tyrrell et al. 
2000), so magnitude of capital may not be a cue for reproduction. Notably, 
most studies of capital and income effects on reproduction in squamates 
have focused on females, and male reproductive decisions may be made 
using different cues (Aubret et al. 2002).

5.5.2 Physiology of Resource Availability Detection and 

Transduction

The possibility that reproductive decisions depend on magnitude of 
capital or rate of income assimilation raises the implicit hypothesis that 
squamates have physiological mechanisms for detecting the magnitude of 
their stored reserves (capital) of lipid, protein, total energy, and/or specifi c 
limiting nutrients, or the rate of assimilation (income) of at least one of 
those resources. To date, few experiments have tested this hypothesis, but 
ghrelin (Unniappan 2010) and leptin (Niewiarowski et al. 2000), or similar 
hormones, might play roles in communicating income and capital resource 
abundance to the brain. As a regulator of serum glucose, insulin might also 
play a role in communicating nutritional status to the brain, but insulin has 
not been investigated in reptiles aside from structural comparisons with 
other taxa (Conlon and Hicks 1990). In addition, it is not clear how the HPGA 
functions when opportunities for reproduction are skipped. Females of some 
species (e.g., Vipera aspis) appear to skip opportunities for reproduction by 
not initiating vitellogenesis at all (Aubret et al. 2002), which suggests that 
hormonal cascades in the HPGA either do not occur or are arrested prior to 
reaching the ovary. Females of other species (e.g., Nerodia sipedon and Tantilla 
coronata) appear to initiate vitellogenesis, presumably via activation of the 
HPGA, but do not ovulate and instead undergo follicular atresia (Aldridge 
1982; Aldridge and Semlitsch 1992). It is not clear whether atresia occurs 
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because available resources become limiting after vitellogenesis is initiated. 
Other factors, such as courtship or mating, could play a role in ensuring 
that vitellogenesis is completed (discussed in the next section).

In mammals, ghrelin is a multifunctional peptide hormone that is 
primarily secreted by the stomach in response to stomach emptying and 
fi lling (Murakami et al. 2002). Ghrelin regulates appetite across vertebrate 
taxa, but is also linked to gonadotropin production in fi sh (Kaiya et al. 2008). 
Ghrelin has been identifi ed in the slider turtle, Trachemys scripta, in which it 
shares most of its tertiary structure with other vertebrates (Kaiya et al. 2004). 
Ghrelin has not been identifi ed in squamates and its functions in reptiles 
remain untested. Regardless, the role of ghrelin in regulating appetite, as 
well as its secretion in response to changes in stomach fi lling, suggests that 
it could communicate the rate of income (i.e., food) acquisition in squamate 
reptiles. If squamate ghrelin also stimulates gonadotropin production, as in 
fi sh, then ghrelin might be an important mechanistic link between the rate 
of food acquisition and the decision to reproduce. Stomach fullness and 
ghrelin secretion may therefore be a physiological mechanism by which 
food availability acts as a cue for reproduction in some squamate taxa. The 
apparent conservation of the tertiary structure of ghrelin across vertebrate 
taxa also suggests that the role that ghrelin plays in reproduction could be 
easily tested using standard immunoassays.

In mammals, leptin is a peptide hormone secreted by adipose tissue 
in proportion to adipose tissue mass (Havel 2000). In the Italian wall 
lizard, Podarcis sicula, serum leptin concentrations are highest in spring 
immediately prior to vitellogenesis, when adipose tissue mass is greatest, 
and fall as adipose tissue mass decreases during vitellogenesis (Paolucci et al. 
2001). Serum leptin concentrations are also usually correlated with adipose 
tissue mass in the fence lizard, Sceloporus undulatus, but are notably lowest 
in autumn, when adipose tissue mass is greatest (Spanovich et al. 2006). 

In mammals, serum leptin concentrations are directly correlated with 
the release of GnRH, gonadotropin, and estradiol (Caprio et al. 2001), and 
maternal allocations to offspring increase with increasing serum leptin 
(French et al. 2009). In addition, birds can be induced to lay additional 
clutches as a result of artifi cially increased serum leptin concentrations 
(Lõhmus and Björklund 2009). Thus, leptin may be a mechanism for 
communicating adipose tissue mass (i.e., fat/capital storage) to the brain, 
and may allow fat mass to serve as a cue for reproduction in apparent 
capital breeders, but this hypothesis has not been tested in squamates. 
Importantly, the temporal disconnect between adipose tissue mass and 
serum leptin concentration that occurs in autumn in Scleropus undulatus 
(and in some mammals; Kronfeld-Schor et al. 2000), if conserved across 
taxa, would compromise studies of direct relationships between leptin and 
reproduction in species that initiate reproduction in autumn. In bats, leptin 
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production declines in autumn, regardless of fat mass, to maximize pre-
hibernatory fattening (Kronfeld-Schor et al. 2000), and could follow a similar 
trend in temperate squamates. Thus, in temperate squamates that initiate 
reproduction in the autumn, any “signal” for reproduction transduced from 
fat mass could be received by the brain prior to the autumn down-regulation 
of leptin production. Alternatively, reception or interpretation of the leptin 
“signal” in the brain could be modifi ed by transduction of photoperiod or 
temperature. Indeed, leptin sensitivity, presumably modulated by receptor 
density in target tissue, is regulated by photoperiod in both hamsters and 
voles (Klingenspor et al. 2000; Krol et al. 2006). If similar mechanisms occur 
in squamate reptiles, then leptin might not promote reproduction on its own. 
Instead, reproduction might be promoted by a decrease in serum leptin 
simultaneous with increased melatonin production. Possible interactions 
between cues for time-of-year and resource availability illustrate that 
reproduction is promoted by multifaceted regulatory systems (Fig. 5.3), 
possibly tuned by natural selection to initiate reproduction only when 
multiple cues indicate that reproductive success is likely to be maximized.

As noted in the prior section, even when reproduction is initiated, 
female squamates appear to adjust clutch and litter sizes depending on 
resource availability. Clutch/litter size may be determined at two points 
during the reproductive cycle: fi rst, females recruit a given number of 
ovarian follicles for primary vitellogenesis at the start of a reproductive 
cycle; secondly, females selectively allocate yolk to, and ovulate, a fraction 
of the “committed” follicles, while the rest undergo atresia (Aldridge 1982; 
Aldridge and Semlitsch 1992). Selective atresia of follicles, in particular, 
appears to be widespread in squamate reptiles (Shine 1977; Jones et al. 
1978; Trauth 1978; Etches and Petitte 1990; Mendez-De La Cruz et al. 1993).

Whether clutch/litter size is ultimately determined at the initiation 
of vitellogenesis or by selective ovulation/atresia remains unknown, 
but exogenous FSH has been shown to increase clutch size in several 
species (Sinervo and Licht 1991; Jones and Swain 2000). The correlations 
between body condition (or fat body mass) and clutch/size, along with the 
observation that artifi cial increases in FSH stimulate increases in clutch size, 
suggest that hormones that signal resource abundance to the brain, if they 
exist, act in a dose-dependent manner. This could provide a mechanism 
for females to adjust clutch/litter size to abundance based on resource 
availability. Selection could be expected to act strongly on this ability, 
because overcommitting resources to reproduction could lead to starvation 
prior to parturition, while undercommitting could prevent females from 
realizing their actual reproductive value (e.g., Fisher 1930; Lack 1954).
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Color image of this fi gure appears in the color plate section at the end of the book.

Fig. 5.3 Mechanisms squamates might use to detect resource availability are added to the 
generalized HPGA. Question marks indicate that leptin and ghrelin signaling mechanisms are 
hypothetical indicators of resource availability to the HPGA, and that melatonin may seasonally 
modify the action of leptin. Organs are represented by black boxes, hormones are blue, and 
cues are green. Mechanisms of detecting environmental conduciveness, introduced in Fig. 2, 
are obscured to enhance clarity yet emphasize that multiple detection systems might interact 
to inform the decision to reproduce. The pathway linking melatonin directly to the gonad has 
been removed for clarity. 
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5.6 SOCIAL CUES: MATING AND COURTSHIP

Cues that communicate likelihood of successful mating are likely to be 
important in the decision to reproduce in species that experience high fi tness 
and/or energy costs of reproduction. Cues communicating likelihood of 
successful mating may be especially important in females, who may incur 
both high energetic costs of gametogenesis and gestation (Robert and 
Thompson 2000; Schultz et al. 2008; Van Dyke and Beaupre 2011), and high 
fi tness and energetic costs of transport while gravid or pregnant (Shine 
1980; Webb and Lannoo 2004). As a result, females may be under strong 
selective pressure to avoid potential costs of reproduction unless mating 
and fertilization are likely. 

5.6.1 Phenology of Mating and Courtship Cues

Induced ovulation, in which mating physically or chemically stimulates 
ovulation in the female (Taymor 1978), is the most likely cue for 
communicating the likelihood of successful mating. Induced ovulation is 
widespread among eutherian mammals (Lariviere and Ferguson 2003), 
but among reptiles has only been reported in sea turtles (Manire et al. 
2008). Although induced ovulation has not been reported in squamates, 
females of some species, especially Thamnophis sirtalis, appear to initiate 
ovarian recrudescence and/or vitellogenesis only after mating (Bona-Gallo 
and Licht 1983; Whittier and Crews 1986b; Mendonça and Crews 1990; 
Mathies et al. 2004). If the disparity between mating-induced ovulation and 
ovarian recrudescence represents a taxonomic difference between mammals 
and squamates, it could be because vitellogenesis is more energetically 
expensive than pregnancy or gravidity in squamates (Van Dyke and Beaupre 
2011), while pregnancy and lactation are more energetically expensive 
than vitellogenesis in mammals (Gittleman and Thompson 1988). Thus, 
squamates may be more likely to avoid initiating vitellogenesis unless 
mating has occurred, whereas mammals are more likely to avoid ovulation 
unless mating has occurred. Long-term oviducal sperm storage is also 
common in squamates (Sever and Hamlett 2002), and allows females to 
store sperm from matings that occur prior to vitellogenesis.

In addition to mating, courtship and/or the presence of males alone 
may be suffi cient to induce reproduction in females of some squamate 
species, possibly because it confers a reasonable expectation of successful 
mating. Captive female blood pythons, Python curtus, are more likely to 
initiate vitellogenesis when housed with males (DeNardo and Autumn 
2001) and male courtship plays a role in environmentally-induced 
ovarian recrudescence during vitellogenesis in green anoles, Anolis 
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carolinensis (Crews 1975). Similarly, male courtship is linked to ovulation 
in sexual whiptail lizards (Aspidoscelis sp.; Crews et al. 1986). Interestingly, 
parthenogenetic whiptails like Aspidoscelis uniparens retain this response, 
and ovulation can be stimulated by courtship and pseudocopulation by 
male-like females (Moore et al. 1985; Crews et al. 1986).

Despite the preceding examples, mating and/or courtship may not be 
important cues for reproduction in all female squamates. Female viviparous 
lizards, Zootoca vivipara, ovulate eggs regardless of whether they have mated 
or experienced courtship, and may produce unfertilized eggs as a result 
(Bleu et al. 2011). Likewise, female leopard geckos, Eublepharis macularius, 
initiate vitellogenesis regardless of exposure to males (LaDage and Ferkin 
2008). Female tuataras, Sphenodon punctatus, initiate vitellogenesis years 
prior to mating (Brown et al. 1991; Cree et al. 1992), but it is not clear whether 
mating affects the decision to ovulate. Furthermore, observed relationships 
between mating and/or courtship and vitellogenesis or ovulation in 
squamates are, with some exceptions (e.g., Mendonça and Crews 1990), 
largely correlative. In female Thamnophis sirtalis, both vitellogenesis 
and pheromone production are stimulated by elevated serum estradiol 
concentrations (Parker and Mason 2012). Therefore, vitellogenesis may 
not be stimulated by courtship; instead, vitellogenesis and attractiveness 
(and subsequent courtship) may be simultaneous consequences of females 
initiating reproduction as a result of courtship-independent cues. 

5.6.2 Physiology of Mating and Courtship Cue Detection and 

Transduction

Nearly all studies of the physiology underlying the effects of mating and 
courtship on ovarian recrudescence and vitellogenesis in squamates have 
focused on Thamnophis sirtalis. Female T. sirtalis exhibit a pronounced 
surge in serum estradiol and prostaglandin (PG-F2α) in response to mating 
(Whittier et al. 1987; Mendonça and Crews 2001), which is probably the 
result of a neuroendocrine cascade initiated by physical stimulation of 
stretch receptors in the cloaca during intromission (Whittier and Crews 
1986b). Spinal transection and injection of both lidocaine and tetracaine near 
the cloaca inhibit the mating-induced estradiol surge, but only tetracaine 
inhibits post-mating ovarian recrudescence in T. sirtalis (Mendonça and 
Crews 1990). Similar phenomena have been observed in cats, which induce 
ovulation after physical stimulation of the vagina during mating (Greulich 
1934), as a result of direct neuronal communication with the brain (Rose 
1978). 

Mendonça and Crews (1990, 2001) suggested that tactile stimulation 
of the skin during both mating and courtship could also contribute to the 
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ovarian response to mating in Thamnophis sirtalis, but it is not clear whether 
estradiol or PG-F2α mediate this response. Many male squamates bite 
females during intromission (Stamps 1975; Carpenter 1977; Gillingham 1979; 
Pandav et al. 2007), and male boas and pythons are well-known for using 
their pelvic spurs to “stimulate” females during courtship (Gillingham and 
Chambers 1982). These tactile behaviors could provide alternative means 
of physical neuronal stimulation in addition to intromission. A relationship 
between tactile stimulation of the skin and ovarian recrudescence could also 
provide a mechanism for explaining why male presence and/or courtship 
alone can stimulate vitellogenesis and/or ovulation in other squamate taxa. 

Most research on mating-induced ovarian recrudescence and ovulation 
in squamates has focused on physical stimulation during intromission, but 
other mechanisms have been investigated in mammals and could exist in 
squamates. Ovulation-inducing factors (OIF), which stimulate LH surges 
in females after mating, have been identifi ed in the seminal fl uid of camels 
(Adams et al. 2005), and similar mechanisms may also exist in rabbits, 
mice, pigs, and horses (Bogle et al. 2011; Silva et al. 2011). In pigs, seminal 
prostaglandins may play a role in ovulation induction (Ratto et al. 2011). In 
squamates, unmated female Thamnophis sirtalis, whose cloacae were smeared 
with male seminal fl uid, exhibited reduced attractiveness to other males 
(Shine et al. 2000). Female attractiveness in snakes is primarily mediated 
by pheromone production, which is stimulated by estradiol (Parker and 
Mason 2012), so these data suggest that male seminal fl uid might alter 
estradiol production in females that have mated. If that is the case, then the 
possibility remains that male seminal fl uid contains factors that could also 
interact with female HPGA to initiate or regulate vitellogenesis, possibly in 
an interaction with physical stimuli during intromission and/or courtship 
(Fig. 5.4). Prostaglandins are abundant in snake seminal fl uid (Whittier and 
Crews 1986a), and may be a useful candidate mechanism for investigating 
the possibility of chemical induction of vitellogenesis in female squamates 
(Friesen 2012). Finally, females of many species store sperm in oviducal 
crypts after mating (Sever and Hamlett 2002). These crypts could produce a 
neuronal or hormonal signal that notifi es the brain and/or HPGA whether 
healthy sperm are present at the appropriate time for reproduction to be 
initiated.

5.7 FUTURE DIRECTIONS

Squamates are excellent model organisms for studying the function and 
evolution of reproductive cue-detecting mechanisms, but studies have been 
limited by diffi culty in accurately measuring the secretion and function of 
peptide hormones, especially GnRH and gonadotropins. As a result, we still 
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lack a comprehensive understanding of the phenomena squamates use as 
cues for reproduction, and how those cues are detected and communicated 
to the HPGA. Indeed, the mechanisms summarized in this review are largely 
untested in reptiles, and it is possible that alternative mechanisms remain 
to be discovered. The advent of low-cost next-generation transcriptome 

Color image of this fi gure appears in the color plate section at the end of the book.

Fig. 5.4 Mechanisms female squamates might use to determine whether fertilization is likely 
are added to the generalized HPGA. Question marks indicate that all signaling mechanisms 
that might communicate mating and/or courtship to the HPGA are hypothetical. It is also 
unclear whether any of these hypothetical mechanisms act directly on the hypothalamus, 
anterior pituitary, or gonads. Organs are represented by black boxes, hormones and neural 
signaling are blue, and cues are green. Previously introduced cue detection mechanisms are 
obscured to enhance clarity yet emphasize that multiple detection systems might interact to 
inform the decision to reproduce.
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sequencing (e.g., Mardis 2008; Ekblom and Galindo 2011; Brandley et 
al. 2012), along with the growing availability of genomes for non-model 
organisms, including squamates (Castoe et al. 2013; Vonk et al. 2013), is 
poised to signifi cantly advance our ability to identify both hypothetical 
and novel hormonal pathways, as well as other molecular mechanisms 
involved in cue detection and transduction. In particular, a transcriptome 
sequencing approach examining total gene expression in the organs 
involved in both the HPGA and reproductive cue detection could determine 
1) what hormones are involved in communication of reproductive cues to 
and within the HPGA; 2) where those hormones are produced; 3) what 
organs produce receptors for those hormones and might be important in 
transduction of reproductive cues; and 4) whether dissociated breeders 
initiate gametogenesis and mating using separate cues, or even separate 
HPGA hormonal cascades.

Both nucleotide and peptide sequences can be identified from 
transcriptome sequencing, thereby allowing researchers to design 
functional experiments using standard molecular methods, including 
both gene expression (e.g., quantitative PCR or in situ hybridization) and 
immunological approaches (e.g., western blot, immunohistochemistry) if 
suitable antibodies are readily available. Furthermore, the combination 
of transcriptome sequencing and proteomics allows simultaneous 
examination of gene expression and protein translation (e.g., Wong et al. 
2012; Margres et al. 2014), which would be a powerful method for examining 
hormonal cascades throughout cue detection, stimulation of the HPGA, 
and upregulation of reproductive physiology. Similar approaches are 
already being used to study multiple aspects of the biology of non-model 
organisms, including the evolution of extreme digestive physiology, venom, 
and viviparity in squamates (Murphy and Thompson 2011; Brandley et al. 
2012; Margres et al. 2014; Castoe et al. 2013), thus they represent powerful 
tools for an area of research that has been historically constrained by the 
limitations of traditional methods.

Elucidating how reproductive cue-detection mechanisms function 
in concert with diverse reproductive strategies and environmental 
conditions is a critical component to understanding how species respond 
to environmental change. Indeed, mismatches between reproductive 
cues and optimal reproductive conditions, caused by global climate 
change, have already been reported in migratory birds (Visser et al. 2004). 
As environmental temperatures have warmed, vegetation and insect 
production has advanced earlier in the year, while reproduction, which 
is cued by photoperiod in some birds, has not (Visser et al. 1998). The 
potential for similar mismatches in squamate reptiles is unclear because 
they potentially utilize multiple simultaneous cues for reproduction, 
including both photoperiod and temperature. Nevertheless, some squamate 



Cues for Reproduction in Squamate Reptiles 131

species may be highly vulnerable to global climate change (Huey et al. 
2010; Sinervo et al. 2010), and assessing the role of mismatches between 
reproductive cue detection and changes in environmental conditions is 
currently not possible in most taxa. As a result, integrated investigations of 
reproductive cue detection mechanisms, utilizing genomic, molecular, and 
ecological methods, may hold great promise for improving the conservation 
of these species. More broadly, these investigations are needed to advance 
understanding of how animals make reproductive decisions (e.g., when 
to reproduce, reproductive frequency, clutch size), which are critical 
components of life-history evolution.
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